
AP BIOLOGY BIOCHEMISTRY ACTIVITY #2

WATER, ACIDS, BASES, BUFFERS

STRUCTURE & GEOMETER OF WATER: Water is polar Maximum number of H bonds = 4 Each water molecule can form a max. of 4 hydrogen bonds with 4 other water molecules - Hydrogen Bond

PROPERTIES OF WATER:

<u>Liquid water is cohesive</u>

Cohesion = H bonds between water molecules; H₂O molecules tend to stick tog.

Importance = Transport H₂O against gravity in plants Higher surface tension

Water has a high specific heat

Takes a lot of energy to raise 1 gram of H₂O 1 °C

Why? Must break H bonds

Liquid H₂O can absorb large amounts of heat with small changes in temperature

Water has a high heat of vaporization

Takes a lot of energy to convert liquid H₂O into vapor Why? Must break H bonds Keeps water in liquid state

Water expands with it freezes

Solid H₂O is less dense than liquid H₂O Why? In solid state H₂O locked into max. number of H bonds; takes up more space

Water is a versatile solvent

Will dissolve polar covalent and ionic compounds

DISSOCIATION OF WATER:

$$H_2O + H_2O \leftrightarrow H_3O+ + OH H_2O \leftrightarrow H+ + OH-$$

Hydronium ion Hydroxide ion

1 out of 554,000,000 water molecules dissociates At equilibrium in pure water at 25°C $[H+] = [OH-] = 1.0 \times 10^{-7} M$

If add [H+] to pure water water

Removes OH-Equilibrium shifts left [H+] > [OH-]

If add [OH-] to pure

Removes H+ Equilibrium shifts left [OH-] > [H+]reduces H+ indirectly If add NH₃ $NH_3 + H_+ \rightarrow NH_4+$

Reduces H+ directly

PH SCALE:

$$pH = -log_{10}[H+]$$

if $[H+] = 10^{-7}$
then $pH = 7$

[H+] x [OH-] =
$$10^{-14}$$

If [H+] = 10^{-9}
Then [OH-] = 10^{-5}
pOH = 5
pH = 9

Buffers:		
Description	Function	Importance
Weak acids or bases	Minimize changes in pH	Controls chemical reactions
		Maintains
		homeostasis

BICARBONATE BUFFER SYSTEM:

$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$$

 HCO_3 - = Bicarbonate (weak base) H_2CO_3 = Carbonic acid (weak acid)

Major buffer system in blood Maintains blood pH between 7.38 and 7.42

Action:	Effect:
Increase [H ⁺] How? Fat metabolism OD on acidic drug	Increase [H+] Equilibrium shifts left H+ + HCO_3 - \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O Increase [CO_2] Increase rate and depth of respiration
Increase Rate & Depth of Respiration Hyperventilate	Decrease $[CO_2]$ Equilibrium shifts left $H+ + HCO_3- \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O$ Blood pH increases