AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #4

NAME	
DATE	HOUR

Photosynthesis

SITE OF PHOTOSYNTHESIS -- PLANTS

SITE OF PHOTOSYNTHESIS – PROKARYOTES

Lack chloroplasts Chlorophyll built into plasma membrane

STRUCTURE OF CHLOROPLASTS

OVERVIEW OF PHOTOSYNTHESIS

LIGHT REACTIONS – CYCLIC ELECTRON FLOW

Cellular Energetics Activity #4 page 4

LIGHT REACTIONS - NONCYCLIC ELECTRON FLOW

PROBLEM – PHOTORESPIRATION

If $[O_2] > [CO_2]$ in leaves C_3 plants Rubisco fixes O_2 instead of CO_2 Rice, wheat 5-C compound produced & Soybeans 5-C \rightarrow 1 PGA enters Calvin Cycle 1 glycolate (2-C) exits chloroplasts and enters peroxisomes Decreases productivity Fostered by hot, dry, bright days

C₄ PLANTS

- Fix CO₂ as 4-
- Segregate CO₂ fixation from Calvin cycle
- Acts as CO₂ • pump
- PEP phosphoenlopyruvate • carboxylase has lower affinity for O_2 than rubisco
- Adaptation in hot regions with intense light

CAM PLANTS Crassulacean Acid Metabolism - similar to C4 only Ex: cacti, aloe vera, pineapples *same structures, different times of day

