Notes

AP BIOLOGY
EVOLUTION
ACTIVITY \#2

NAME
DATE \qquad HOUR \qquad

Hardy-Weinberg Theorem

Population

Localized group of individuals belonging to same species Species = group of populations whose individual fave potential to interbreed

Gene Pool

- Total aggregate of genes in a population at any one time
- All alleles at all loci in all individuals
- Example - flower population with white and pink flowers

Pop. of 500 individuals Allele frequency:
20 wfite
320 fomozygous pink
160 heterozygous pink

$$
a=\frac{2(20)+160}{1000}=\frac{200}{1000}=0.2
$$

$$
\mathcal{A}=\frac{2(320)+160}{1000}=\frac{800}{1000}=0.8
$$

Hardy-Wei nberg Theorem

Frequency of alleles and genotypes in a population's gene pool remain constant over generations unless acted upon by agents other than sexual recombination

Hardy-Weinberg Equilibri um

Allele frequency is constant from generation to generation	
Required Conditions For Hardy-Weinberg Equilibrium	
Very large population	Random mating
Isolation from other populations	$\mathcal{N o}$ natural selection
No net mutations	

Hardy-Weinberg Equation

$$
\begin{aligned}
& p+q=1 \\
& p=\text { frequency of dominant allele } \\
& q=\text { frequency of recessive allele } \\
& p^{2}+2 p q+q^{2}=1 \\
& p^{2}=\text { frequency of homozygous dominant genotype (AAA) } \\
& 2 p q=\text { frequency of heterozygous genotype (Aa) } \\
& q^{2}=\text { frequency of homozygous recessive genotype (aa) }
\end{aligned}
$$

Hardy-Wei nberg Sample Problem

In a population of mice, 245 are 6 lack, 210 are brown, and 45 are white.

1. KEY

$$
\begin{array}{rl}
\mathcal{B B}=\mathcal{B} \text { ack }=p^{2} & \mathcal{B}=p \\
\mathcal{B} b=\mathcal{B} \text { rown }=2 p q & 6=q \\
\mathcal{B} b=\mathcal{W} \text { fite }=q^{2} &
\end{array}
$$

2. Calculate allele frequencies

$$
\mathcal{B}=\frac{2(245)+210}{1000}=\frac{700}{1000}=0.7
$$

$6=1-\mathcal{B}=1-.7=0.3$
3. Calculate genotype frequencies

$$
\mathcal{B B}=(.7)^{2}=.49=49 \%
$$

$$
\mathcal{B} 6=2(.7)(.3)=.42=42 \%
$$

$$
66=(.3)^{2}=.09=9 \%
$$

4. Question - Is the population in $\mathcal{H} \cdot \mathcal{W}$ equilibrium?

Genotypes Expected
$\mathcal{B B} \quad .49(500)=245 \quad 245$
B6 $\quad .42(500)=210 \quad 210$
$66 \quad .09(500)=45 \quad 45$

Answer $=$ Yes, the population is in $\mathcal{H}-\mathcal{W}$ equilibrium because the expected genotype frequencies match the actual frequencies

