	Notes
NAME	

AP BIOLOGY EVOLUTION ACTIVITY #2

DATEHOUR

HARDY-WEINBERG THEOREM

POPULATION

Localized group of individuals belonging to same species Species = group of populations whose individual have potential to interbreed

GENE POOL

•	Total	aggregate	of	genes	in	a	population	at	any	one	time
---	-------	-----------	----	-------	----	---	------------	----	-----	-----	------

- All alleles at all loci in all individuals
- Example flower population with white and pink flowers

Pop. of 500 individuals 20 white	Allele frequency:				
320 homozygous pink 160 heterozygous pink	$a = \frac{2(20) + 160}{1000} = \frac{200}{1000} = 0.2$				
	$A = \frac{2(320) + 160}{1000} = \frac{800}{1000} = 0.8$				

HARDY-WEINBERG THEOREM

Frequency of alleles and genotypes in a population's gene pool remain constant over generations unless acted upon by agents other than sexual recombination

HARDY-WEINBERG EQUILIBRIUM

Allele frequency is constant from	generation to generation				
REQUIRED CONDITIONS FOR HARDY-WEINBERG EQUILIBRIUM					
Very large population	Random mating				
Isolation from other populations	No natural selection				
No net mutations					

HARDY-WEINBERG EQUATION

p + q = 1 p =frequency of dominant allele q =frequency of recessive allele $p^2 + 2pq + q^2 = 1$ $p^2 =$ frequency of homozygous dominant genotype (AA) 2pq =frequency of heterozygous genotype (Aa) $q^2 =$ frequency of homozygous recessive genotype (aa) HARDY-WEINBERG SAMPLE PROBLEM

In a population of mice, 245 are black, 210 are brown, and 45 are white.

- 1. KEY $BB = Black = p^2$ B = p Bb = Brown = 2pq b = q $Bb = White = q^2$
- 2. Calculate allele frequencies B = $\frac{2(245) + 210}{1000} = \frac{700}{1000} = 0.7$

b = 1 - B = 1 - .7 = 0.3

- 3. Calculate genotype frequencies BB = $(.7)^2$ = .49 = 49% Bb = 2(.7)(.3) = .42 = 42% bb = $(.3)^2$ = .09 = 9%
- 4. Question Is the population in H-W equilibrium?

Genotypes	Expected	Actual
BB	.49(500) = 245	245
Bb	.42(500) = 210	210
bb	.09(500) = 45	45

Answer = Yes, the population is in H-W equilibrium because the expected genotype frequencies match the actual frequencies