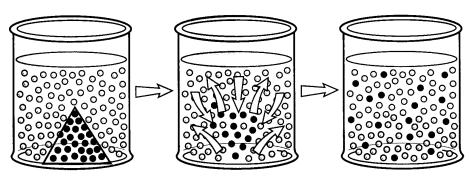
NAME	
DATE	HOLID

CELL TRANSPORT

MEMBRANE PROPERTIES

Selectively permeable

Hydrophobic core:


- Nonpolar cross with ease
- Small polar (H₂O) small enough to pass between lipid molecules
- Large polar and ions cannot pass without help

PASSIVE TRANSPORT

CHARACTERISTICS: Does not require cell energy

Molecues move down (H to L) conc. gradient.

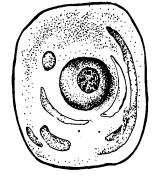
DIFFUSION:

- Random movement of molecules
- Down conc. gradient
- Until equilibrium reached

Osmosis: Diffusion of water across selectively permeable membrane

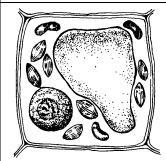
ISOTONIC

Two sol'n with same solute conc.

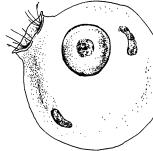

HYPOTONIC

Sol'n with lower solute conc.

HYPERTONIC


Sol'n with higher solute conc.

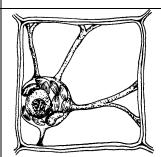
ANIMAL CELLS



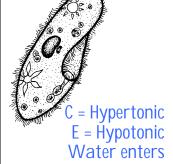
Isotonic
No net
movement of
water
Normal state
for animal cells

PLANT CELLS

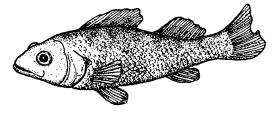

Isotonic
No net
movement of
water
Cell flaccid
(limp)
Plant wilts


Cell: Hypertonic
Environ: Hypotonic
Water enters cell
Cell swells & bursts
Cytolysis
Cell dies

Cell: Hypertonic
Environ: Hypotonic
Water enters cell
Cell swells
Cell wall pushes back
Cell becomes turgid
Normal state for plant
cells


Cell: Hypotonic Environ: Hypertonic Water exits cell Cell shrinks Crenates Plasmolysis Cell dies

Cell: Hypotonic
Environ: Hypertonic
Water exits cell
Cell membrane pulls
away from cell wall
Plasmolysis
Usually lethal


OSMOREGULATION - ADAPTATIONS

Paramecium

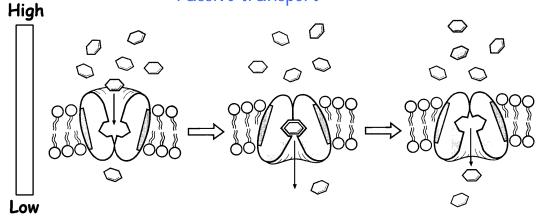
Cell membrane less permeable to water Contractile vacuole pumps water out

Fresh Water Bony Fish

C = Hypertonic E = Hypotonic Water enters

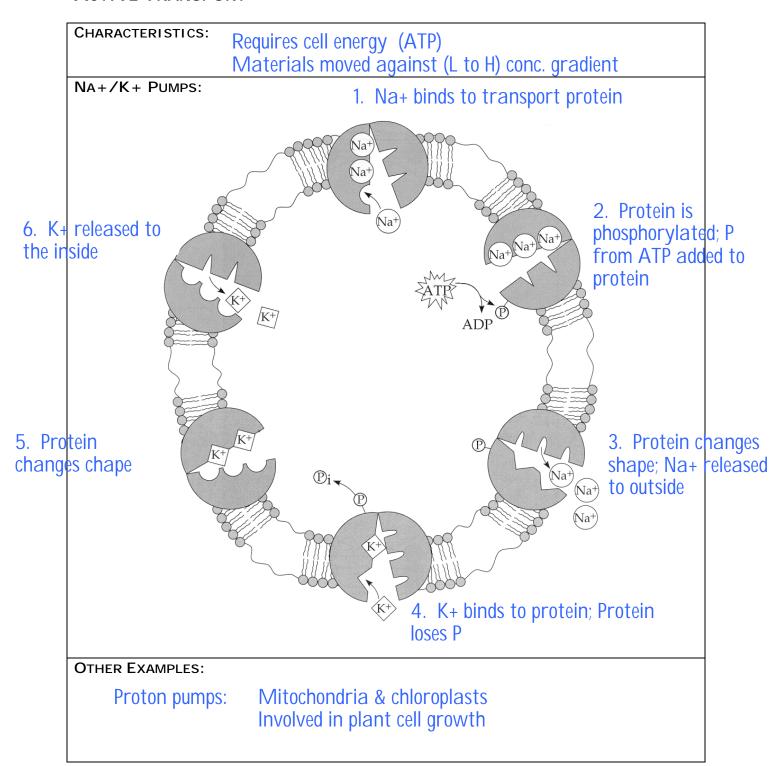
Don't drink water Excrete large volumes of watery urine

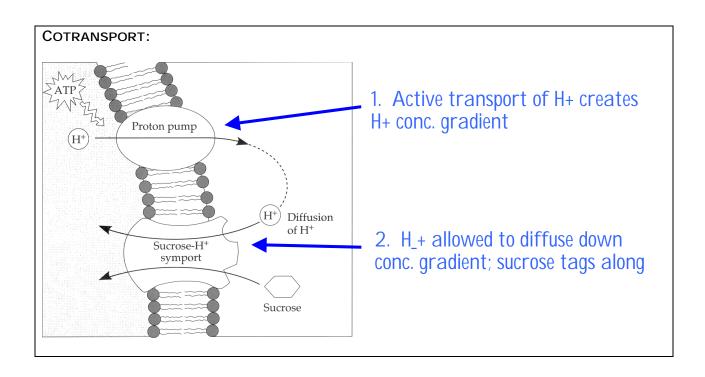
Marine Bony Fish



C = Hypotonic E = Hypertonic Water exits

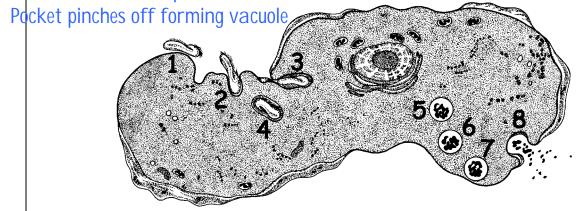
Drink large amounts of water Gills pump excess salts out of body


FACILITATED DIFFUSION:


- Diffusion of solutes across membrane with help of transport proteins
- Passive transport

- Transport proteins are specific
- Model
 - Protein has 2 conformations
 - Solute binds to protein
 - Protein changes shape
 - Solute released to other side of membrane

ACTIVE TRANSPORT



Endodytosis (1-4)

Intake of large molecules, solids, food

Material collects in pocket of cell membrane

Exocytosis (5-8)

- Release of large molecules, solids, wastes from cell
- Vacuole/vesicle fuses with cell membrane
- Contents released to outside

Types of Endocytosis	
PHAGOCYTOSIS	 Cell eating Intake of solids, food, bacteria Nonspecific
PINOCYTOSIS	 Cell drinking Intake of small droplets of liquid (oil) Nonspecific
RECEPTOR-MEDIATED ENDOCYTOSIS	 Specific Model Molecule binds to receptor protein Complex migrates to "coated" pit Pit pinches off forming vacuole

Receptor protein returns to cell membrane