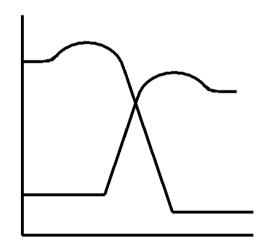
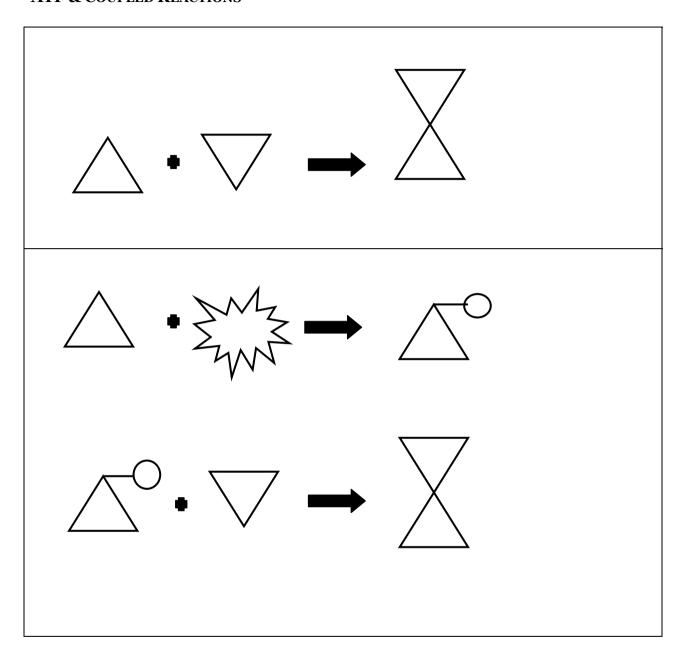

AP BIOLOGY
CELLULAR ENERGETICS
ACTIVITY #1

NAME	
DATE	HOUR


ENERGY EXCHANGES

LAWS OF THERMODYNAMICS

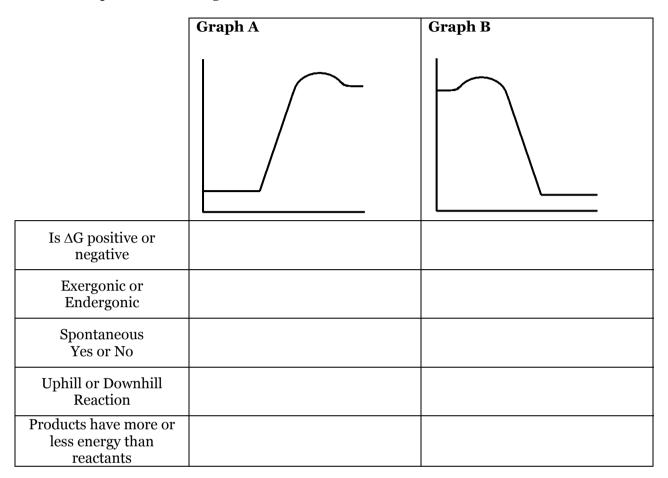
First Law	Second Law
ENERGY EXCHANGES	



COUPLED REACTIONS

ATP		
STRUCTURE		
O—O-		
PRODUCTION	ZMZ Z	
	> W	

ATP & COUPLED REACTIONS

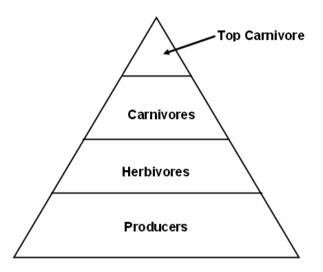

QUESTIONS:

1. Define each of the following terms:

Term		Definition
Metabolism		
Catabolism		
Anabolism		
Identify each o	f the following as true of C atal	polism or A nabolism.
Releas	se energy	"Downhill" reaction
Store	/consume energy	"Uphill" reaction
	complex molecules	Photosynthesis
Build	complex molecules	
Break	down complex molecules	Cellular respiration
	down complex molecules	·
Break Define the follo	down complex molecules	Cellular respiration
Break Define the follo	down complex molecules	Cellular respiration
Define the follo Term Energy Kinetic	down complex molecules	Cellular respiration
Define the follow Term Energy Kinetic Energy Potential Energy	a down complex molecules owing terms:	Cellular respiration Definition
Define the followard Term Energy Kinetic Energy Potential Energy	a down complex molecules owing terms:	Cellular respiration Definition
Define the follow Term Energy Kinetic Energy Potential Energy Identify each of Child	down complex molecules wing terms: f the following as having kinet	Cellular respiration Definition ic energy (KE) or potential energy (PE)

	ng to the Second Law of Thermodynamics, if the total energy before an ege is 500 kcal, then the amount of useful energy after the exchange is:
a.	Less than 500 kcal
b.	500 kcal
c.	More than 500 kcal
Do high	ly ordered living organisms violate the Second Law of Thermodynamics

10. Complete the following chart:



11.	Of the light energy reaching the earth from the sun, the earth's plants are believed to
	convert less than 1% into the form of potential energy stored in the chemical bonds of
	food molecules. What happens to the rest of the energy?

12.	Organisms cannot use heat energy to drive their energy-requiring processes. Does this mean that the heat released by metabolism is of no use to them? Why or why not?

13. Shown below is an energy pyramid for an ecosystem. Use this pyramid to answer the questions that follow.

- a. What happens to the amount of available energy at each trophic level?
- b. Use the laws of thermodynamics to explain why this happens.
- 15. Explain how ATP performs work.
- 16. When ATP is produced, energy is required. What is the source of this energy?
- 17. When ATP is broken, energy is released. How is this energy used?