\qquad
PLANTS FORM \& FUNCTION ACTIVITY \#5

DATE \qquad HOUR__-_

Control Systems in Plants

Hormones

Mechanism for Hormone Action

Plant Form and Function Activity \#5 page 1

Control of Cell Elongation

Control of Apical Domi nance

Рhоtotropism

Plant Form and Function Activity \#5 page 4

GRAVI TROPISM

Plant Form and Function Activity \#5 page 5

Control of Flowering: Short-day Plants

Control of Flowering: Long-day Plants

Questions:

1. Listed below are the production sites and effects of the seven classes of plant hormones. Identify the hormone described. Use the key provided to indicate your answers.

ABA	$=$	Abscisic acid	IAA	$=$
B	Auxin			
C	Brassinosteroids	Cytokinins	G	$=$
Gibberellins				
E	$=$ Ethylene		$=$	Oligosaccharins

\qquad Produced by cells in the apical meristem of the shoot, embryo of the seed, and young leaves
\qquad Produced by actively growing tissues in roots, embryos, and fruits
______ Produced by cells in meristems of apical buds and roots, young leaves, embryos
______ Produced by cells in leaves, stems, roots, green fruit
\qquad Produced by tissues of ripening fruits, nodes of stems, aging leaves, and flowers
______ Found in cell walls
\qquad Produced by cells in seeds, fruits, shoots, leaves, and floral buds
\qquad Required for normal growth and development
\qquad Trigger defense responses against pathogens; regulate growth, cell differentiation and flowering
\qquad Inhibits cell division
\qquad Helps prepare plant for winter; stimulates leaf primordial to form scales
\qquad Stimulates the onset of seed dormancy
\qquad Causes stomata to close when plant begins to wilt
\qquad Causes fruit to ripen
\qquad Inhibits growth when auxin levels are high
\qquad May stimulate aging in plants
\qquad Stimulates formation of abscission layer that leads to loss of leaves
\qquad Causes Thompson grapes to grow larger and farther apart
\qquad When applied to dwarf plant, causes plant to grow to normal height
______ Causes bolting in plants
_____ Stimulates flowering and fruit development
\qquad Promote seed and bud germination
\qquad Anti-aging hormone
\qquad Inhibits branching in roots
\qquad Stimulates growth of axillary buds
\qquad Stimulates cell division
\qquad Promotes growth of fruit
\qquad Promotes formation of adventitious roots
\qquad Promotes cell division in vascular cambium
\qquad Stimulates cell elongation
2. Cytokinins work with auxin. Varying the ratio of auxin to cytokinins in tissue culture produces different effects. Describe the effect on plant growth in each of the following.

RATIO	EfFECT ON PLANT GROWTH
Only auxin	
Only cytokinins	
Equal concentration of auxin and cytokinins	
More auxin than cytokinins	
More cytokinins than auxin	

3. What must happen to the levels of ABA and gibberellin in a seed in order for it to germinate?
\qquad
\qquad
4. What are tropisms?

\qquad
5. If a plant part exhibits a positive tropism, it curves \qquad the stimulus.

If a plant part exhibits a negative tropism, it curves \qquad from the stimulus.
6. What type of tropism is shown in each picture below? Be sure to indicate if the tropism is positive or negative.
Indicated by Arrow
7. Why do cells on the shaded side of a stem have a higher rate of cell elongation that the cells on the sunny side?
\qquad
\qquad
\qquad
8. Explain why tendrils curl around an object.

9. Describe the rapid leaf movement in the Mimosa plant.
\qquad
Explain how this occurs.
\qquad
10. Define the following terms.

Circadian rhythms	
Photoperiodism	

11. Under what photoperiod conditions will:

Short-day plants flower? \qquad
Long-day plants flower? \qquad
12. What is phytochrome?
\qquad

What is its role in triggering plant responses?
\qquad
\qquad
\qquad
13. Use the drawings below to complete the statements that follow.

\qquad would probably flower in June.
\qquad would flower in autumn.
\qquad would flower at any time during the growing season.
\qquad produces the right amount of hormone for flowering when the days get shorter.
\qquad produces the hormone needed for flowering when long periods of light occur.
\qquad does not depend on a certain amount of light to make the needed amount of hormone for flowering.
14. On the diagram below, indicate whether a short-day or a long-day plant would flower under each of the light conditions shown.

Condition	Would short-day plants flower?	Would long-day plants flower?	Condition	Would short-day plants flower?	Would long-day plants flower?
A			D		
B			E		
C			F		

