| NAME. |      |
|-------|------|
|       |      |
| DATE_ | HOUR |

## **BEYOND MENDEL**

## INCOMPLETE DOMINANCE













| CODOMINANCE: |  |  |  |
|--------------|--|--|--|
|              |  |  |  |
|              |  |  |  |
|              |  |  |  |
|              |  |  |  |

**ABO BLOOD GROUPS** 

| Blood Type           | Α  | В  | AB | 0  |
|----------------------|----|----|----|----|
| Genotype             |    |    |    |    |
| RBC Antigen          |    |    |    |    |
| Plasma<br>Antibodies | IM | Ĭ# |    | IN |
| In Anti-A<br>Serum   |    |    |    |    |
| In Anti-B<br>Serum   |    |    |    |    |

## **BLOOD TRANSFUSIONS**

| Blood Type | Can Donate To | Can Receive From |
|------------|---------------|------------------|
|            |               |                  |
|            |               |                  |
|            |               |                  |
|            |               |                  |
|            |               |                  |

## QUESTIONS:

1.

2.

| Complete Dominance  Incomplete Dominance  Codominance  Using Tay-Sachs disease as an example, explain how a heterozygous individual can appear normal at the organismal level, exhibit an intermedia phenotype at the biochemical level, and exhibit both phenotypes at the molecular level.  Organism Level  Biochemical Level |                                               |                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| Codominance  Using Tay-Sachs disease as an example, explain how a heterozygous individual can appear normal at the organismal level, exhibit an intermedia phenotype at the biochemical level, and exhibit both phenotypes at the molecular level.  Organism Level  Biochemical Level                                           |                                               |                                                          |
| Using Tay-Sachs disease as an example, explain how a heterozygous individual can appear normal at the organismal level, exhibit an intermedial phenotype at the biochemical level, and exhibit both phenotypes at the molecular level.  Organism Level  Biochemical Level                                                       | Incomplete<br>Dominance                       |                                                          |
| individual can appear normal at the organismal level, exhibit an intermedia phenotype at the biochemical level, and exhibit both phenotypes at the molecular level.  Organism Level  Biochemical Level                                                                                                                          | Codominance                                   |                                                          |
| Biochemical<br>Level                                                                                                                                                                                                                                                                                                            | ndividual can appear<br>Thenotype at the biod | r normal at the organismal level, exhibit an intermediat |
| Level                                                                                                                                                                                                                                                                                                                           | Organism                                      |                                                          |
| Mologular                                                                                                                                                                                                                                                                                                                       |                                               |                                                          |
| Molecular<br>Level                                                                                                                                                                                                                                                                                                              | Level<br>Biochemical                          |                                                          |

| 3. | A rooster with blue (actually gray) feathers is mated with a hen of the same phenotype. Among their offspring, 15 chicks are blue, 6 are black, and 8 are white.                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | What is the simplest explanation for the inheritance of these colors in chickens?                                                                                                                         |
|    | What offspring would you predict from the mating of blue rooster and a black hen?                                                                                                                         |
| 4. | If two medium-tailed pigs were mated and the liter produced included three stub-tailed piglets, six medium-tailed, and four long-tailed piglets, what would be the simplest explanation of these results? |

5. The chart shows the results from several matings between different tribbles.

| Parental Cross | Offspring  | Parental Cross | Offspring  |
|----------------|------------|----------------|------------|
| Blue x red     | All purple | Yellow x white | All yellow |
| Blue x yellow  | All green  | Blue x black   | All blue   |
| Yellow x red   | All orange | Red x black    | All red    |
| Blue x white   | All blue   | Yellow x black | All yellow |
| Red x white    | All red    | Black x white  | All gray   |

| а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ١.  | Which crosses are examples of complete dominance?    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------|
| AND THE PROPERTY OF THE PARTY O |     |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                      |
| b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )   | Which crosses are examples of incomplete dominance?  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , . | Which drosses are examples of incomplete definition. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                      |

|     | C.     | Give the genotypes for each of the following tribble colors. Remember to use a capital letter to indicate a dominant allele and a lower case letter to indicate a recessive letter. If the color is the result of incomplete dominance, two capital letters (or two lower case letters) should be used. For example, in some flowers when red flowers (RR) are crossed with white flowers (WW), pink (RW) flowers are produced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        | Blue Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |        | Purple Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |        | Green White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |        | Black Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | d.     | Two blue tribbles mate and produce offspring that include white tribbles. What are the genotypes of the parents?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | e.     | If two orange tribbles mate, how many of the 852 offspring would you expect to be yellow? Show your work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | f.     | A special investigation was conducted to determine the identity of the parents of an abandoned litter of tribbles. The litter included blue, purple, green, and orange tribbles. What are the phenotypes and genotypes of the parents?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.  |        | es can be spotted (color against a white background) or solid color. ootted allele is dominant to the solid color allele.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | a.     | When two spotted tribbles were mated, 45 spotted tribbles and 15 solid-colored tribbles were produced. How many of the spotted tribble offspring would you expect to be heterozygous? Show your work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *** |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | MUNNIN | The state of the s |

|    | b.    | Two red spotted tribbles were mated. Each tribble had a black solid-colored parent. How many of the 5,280 offspring would you expect to be black, solid-colored? Show your work. |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. | Defir | ne multiple alleles:                                                                                                                                                             |
|    | Exan  | nple:                                                                                                                                                                            |
| 8. |       | ain why a type O person can donate blood to all other blood types but only receive type O blood.                                                                                 |
|    |       |                                                                                                                                                                                  |

9. Blood typing has often been used as evidence in paternity cases, when the blood type of the mother and child may indicate that a man alleged to be the father could not possibly have fathered the child. For the following mother and child combinations, indicate which blood groups of potential fathers would be exonerated.

| Blood Group of<br>Mother | Blood Group of<br>Child | Blood Group that would Exonerate Man |
|--------------------------|-------------------------|--------------------------------------|
| AB                       | Α                       |                                      |
| О                        | В                       |                                      |
| Α                        | АВ                      |                                      |
| О                        | 0                       |                                      |
| В                        | Α                       |                                      |

| 10. | Fred has type AB blood, Wilma has type B blood, and Pebbles, their daughter has type A blood. Betty has type B blood, Barney has type A blood, and their some BamBam has type O blood. In the bloodiest fight ever witnessed in Bedrock, BCE, Barney accused Betty of having an affair with Fred. Barney also claimed that Fred is BamBam's father, sighting evidence from the new field of Geneticsrock. Could Barney be right? Could Fred be BamBam's father? Support your answer. |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11. | A man with group B blood marries a woman with group B blood. Their child has group O blood. What are the genotypes of these individuals? What other genotypes, and in what frequencies, would you expect in offspring form this marriage?                                                                                                                                                                                                                                            |
| 12. | Color pattern in a species of duck is determined by a single pair of genes with three alleles. Alleles H and I are codominant, and allele i is recessive to both. How many phenotypes are possible in a flock of ducks that contains all the possible combinations of these three alleles?                                                                                                                                                                                           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 13. | Imagine that a newly discovered, recessively inherited disease is only expressed in individuals with group O blood, although the disease and blood group are independently inherited. A normal man with A blood and a normal woman with B blood have already had one child with the disease. The woman is now pregnant for a second time. What is the probability that the second child will also have the disease? Assume the parents are heterozygous for the "disease" gene. Show your work.                                                                                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14. | Match the description/example with the correct pattern of inheritance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | A. Epistasis B. Pleiotropy<br>C. Polygenic Inheritance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Single gene with multiple effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | Gene at 1 locus alters the phenotypic expression of a second gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | Several genes determine one phenotype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Sickle-celled anemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Coat color in mice and rodents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Skin color in humans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Height in humans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15. | In guinea pigs, the gene for production of melanin is epistatic to the gene for the deposition of melanin. The dominant allele M causes melanin to be produced; mm individuals cannot produce the pigment. The dominant allele B causes the deposition of a lot of pigment and produces a black guinea pig, whereas only a small amount of pigment is laid down in bb animals, producing a light-brown color. Without an M allele, no pigment is produced so the allele B has no affect and the guinea pig is white. A homozygous black guinea pig is crossed with a homozygous recessive white: MMBB x mmbb. Give the phenotypes of the $F_1$ and $F_2$ generations. |
|     | F <sub>1</sub> generation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | F <sub>2</sub> generation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 16. | The height of spike weed is a result of polygenic inheritance involving three genes, each of which can contribute 5 cm to the plant. The base height of the weed is 10 cm, and the tallest plant can reach 40 cm. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | If a tall plant (AABBCC) is crossed with a base-height plant (aabbcc), what is the height of the $F_1$ plants? Show your work.                                                                                    |
|     | How many phenotypic classes will there be in the $F_2$ ? List them.                                                                                                                                               |
|     |                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                   |